Complete three-dimensional reduced surface field super junction lateral double-diffused metal-oxide-semiconductor field-effect transistor with semi-insulating poly silicon

Author:

Cao Zhen ,Duan Bao-Xing ,Yuan Xiao-Ning ,Yang Yin-Tang ,

Abstract

Lateral double-diffused metal-oxide-semiconductor field-effect transistor (LDMOS) is a key device for the power integrated circuit (PIC) and high voltage integrated circuit (HVIC) technologies. In order to break through the limit relation of 2.5 power between breakdown voltage (BV) and specific on-resistance (Ron,sp) for the traditional LDMOS, and improve the driving capability for the PIC by reducing the power consumption, the new SJ-LDMOS with the semi-insulating poly silicon (SIPOS SJ-LDMOS) is proposed in this paper for the first time, to the best of the authors' knowledge. In order to take full advantage of super junction concept, the SIPOS layer is used for SJ-LDMOS to achieve the effect of the complete three-dimensional reduced surface field (3D-RESURF) for the SJ-LDMOS. The substrate assisted depletion is effectively eliminated by the buffer layer under the super junction. The overall performances of the SIPOS SJ-LDMOS are improved by the uniform and high resistance of the SIPOS layer. The surface electric field is modulated to be uniform by the electric field modulation effect due to the SIPOS layer covering the field oxide. The higher BV would be achieved for the more uniform surface electric field because of the increased average lateral electric field. The BV for the unit length of the drift region is improved to 19.4 V/μupm. The SIPOS SJ-LDMOS along the 3D are subjected to the electric field modulation by the SIPOS layer, which achieves the complete 3D-RESURF effect, thus the drift region with the high concentration can be depleted completely to obtain the high BV. Moreover, in the on-state the majority carrier accumulation can be formed in the drift region of the SIPOS SJ-LDMOS due to the SIPOS layer, so that the specific on-resistance decreases further. In virtue of the ISE simulation, by optimizing the SIPOS layer of the proposed SIPOS SJ-LDMOS, the results show that the specific on-resistance of the SIPOS SJ-LDMOS is 20.87 mΩ·cm2 with a breakdown voltage of 388 V, which is less than 31.14 mΩ·cm2 for the N-buffer SJ-LDMOS with a breakdown voltage of 287 V, and far less than 71.82 mΩ·cm2 for the conventional SJ-LDMOS with a breakdown voltage of only 180 V with the same drift length.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Kyungho L, Haeung J, Byunghee C, Joonhee C, Pang Y S, Jinwoo M, Susanna K 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs, Kanazawa, May 26-30, 2013 p163

2. Chen X B, Wang X, Johnny K O S 2000 IEEE Trans. Electron Devices 47 1280

3. Deboy G, Marz M, Stengl J P, Strack H, Tihanyi J, Weber H 1998 Proceedings of the IEEE International Electron Devices Meeting, San Francisco, December 6-9, 1998 p683

4. Chen X B, Johnny K O S 2001 IEEE Trans. Electron Devices 48 344

5. Sameh G, Khalil N, Salama C A T 2003 IEEE Trans. Electron Devices 50 1385

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3