Design and study of miniaturized-element frequency selective surfaces

Author:

Xu Nian-Xi ,Feng Xiao-Guo ,Wang Yan-Song ,Chen Xin ,Gao Jin-Song , ,

Abstract

We propose a miniaturized-element frequency selective surface (MEFSS) by using the coupling mechanisms between capacitive surface and inductive surface, so the uint cell size will not be restricted by wavelength. In order to improve resonance stability performance with respect to different polarizations and incidence angles, according to the traditional FSS Y element, we create periodic elements of capacitive surface and inductive surface with Y shape and Y element array is in the form of equilateral triangle, The grid array and the effects of the parameteristics of Y loop element on the frequency response characteristics of MEFSS are calculated using the modal matching method. With filming technology and lithography, the corresponding capacitive surface and inductive surface between polyimide are produced and a prototype MEFFSS using freedom space method is examined. Both simulated and measured results obtained show that the MEFFSS constructed by using equilateral triangle Y element array has much better f0 resonance stability performance with respect to different polarizations and 60 incidence angles, and the -3 dB bandwidth reaches up to 7.6 GHz. We present a theoretical and experimental reference of MEFSS for the applications in large-angle incidence curved streamlined radome.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3