Design and study on the dual-band radome with FSS operation at Ku-/Ka-band

Author:

Wang Xiu-Zhi ,Gao Jin-Song ,Xu Nian-Xi , ,

Abstract

In order to meet the multi-band and integration requirements of the communication apparatus, the coupling and resonance mechanism can be exploited to design a frequency selective surface (FSS), with two pass-bands at Ku-band and Ka-band, which is composed of three metallic layers and fabricated on a flat substrate equivalent to a solid wall radome or an A-sandwiched radome. According to the physical structure of the FSS, an equivalent circuit model is established to analyze the filtering mechanism, and the transmission characteristics of the radomes with FSS are obtained by using a full-wave analysis software. The first pass-band at Ku-band with miniaturization property can be achieved by coupling the electric and magnetic field of the three surfaces, while the second pass-band at Ka-band can be achieved by the resonance of the square loop slots embedded in the capacitive surfaces. The transmissions of the solid wall radome and A-sandwiched radome with FSS are 89% and 94.7% at Ku-band, and 88.2% and 93.7% at Ka-band, respectively. When the incident angle is varied from normal to 60°, the frequency response characteristics of the two pass-bands are stable. Finally, the experimental results of the prototype with a solid substrate measured in free-space environment are in good agreement with the simulated values. The proposed radome structure with FSS, which is based on the coupling and resonance mechanism, can achieve two stable pass-bands at Ku-/Ka-band. This may provide some theoretical and experimental assistance for the study of the multi-band and wide band spacing FSS.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference16 articles.

1. Munk B A 2000 Frequency Selective Surface: theory and design (1st Ed.) (New York: Wiley)

2. Jia H Y, Gao J S, Feng X G 2009 Chin. Phys. B 18 1227

3. Meng Z J, Wang L F, L M Y, Wu Z 2010 Chin. Phys. B 19 127301

4. Li X Q, Gao J S, Zhao J L, Sun L C 2008 Acta Phys. Sin. 57 3803 (in Chinese) [李小秋, 高劲松, 赵晶丽, 孙连春 2008 物理学报 57 3803]

5. Xu N X, Feng X G, Wang Y S, Chen X, Gao J S 2011 Acta Phys. Sin. 60 11410201 (in Chinese) [徐念喜, 冯晓国, 王岩松, 陈新, 高劲松 2011 物理学报 60 11410201]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3