Influence of nitrogen in diamond films on plasma etching

Author:

Wu Jun ,Ma Zhi-Bin ,Shen Wu-Lin ,Yan Lei ,Pan Xin ,Wang Jian-Hua ,

Abstract

Nitrogen-doped and undoped diamond films grown by microwave plasma chemical vapor deposition (CVD) were etched by electron cyclotron resonance (ECR) plasma with asymmetric magnetic mirror field. The influences of nitrogen doping on the etching characteristic of CVD diamond films are studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy(XPS), and surface roughness measuring instrument; and the etching mechanism is explicated in detail by etching models. It is found that the crystal edges are dramatically etched for the nitrogen-doped diamond film, while the (111) facets are etched and crystalline grains collapse for the undoped diamond film. And after etching by ECR plasma for 4 h, the nitrogen-doped diamond film surface roughness decreases from 4.761 μm to 3.701 μm, while the surface roughness of the undoped film decreases from 3.061 μm to 1.083 μm. The results indicate that nitrogen doping has great influence on the etching characteristic of the CVD diamond films. Nitrogen-doping deteriorates the film quality and increases the defect density in the crystallites. And the defects distributed in the crystal edge lead to dramatically etching of the crystal edge. Compared with the nitrogen-doped diamond film, the defect density in undoped diamond film is relatively low and the distribution of defects is comparatively uniform, resulting in the fact that (111) facets would suffer from oxygen cyclotron ion beams bombardment and so grains of the film collapse. The reason why the surface roughness of nitrogen-doped diamond film decreases less than the undoped diamond film is that the movement of ions is affected by the electrons emitting from crystal edge, which weakens the ion bombardment on (111) facets.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3