Evolution of surface morphology and properties of diamond films by hydrogen plasma etching

Author:

Chu Genjie1,Li Sijia1,Gao Jiyun2,Yang Li3,Hou Ming3,Guo Shenghui3

Affiliation:

1. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology , Kunming , 650093 , China

2. School of Chemistry and Environment, Yunnan Minzu University , Kunming 650093 , China

3. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology , Kunming 650093 , China

Abstract

Abstract The micron-scale diamond film was prepared using hydrogen and methane as the mixed gas supplies via self-developed 3 kW/2,450 MHz microwave plasma chemical vapor deposition (MPCVD) equipment. On this basis, the evolution of the surface morphology, hydrophobicity, and electrical properties of samples under different hydrogen plasma etching times was investigated. The results indicate that the crystal edge and the top of the diamond grain were preferentially etched when etching time is less than 30 min. The surface roughness reduced from 0.217 to 0.205 μm, and the resistance value decreases from 3.17 to 0.35 MΩ. However, as the etch time increases to 120 min, the etching depth increases, and the surface roughness was increased. Simultaneously, the contact angles increased from 62.8° to 95.9°, which indicates that the surface of the diamond films exhibits more pronounced hydrophobicity. The treatment time of hydrogen plasma has no significant effect on the resistance value in the range of 0.26–0.50 MΩ. The mechanism of surface etching by hydrogen plasma was also discussed.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3