Energy efficiency analysis of ArF excimer laser system

Author:

Wang Qian ,Zhao Jiang-Shan ,Luo Shi-Wen ,Zuo Du-Luo ,Zhou Yi , , , ,

Abstract

The reliable functioning and continual optimizing of ArF excimer laser system is of importance when it comes to productization into the market from a laboratory test machine. The analysis of dynamic characteristics of the system is vital to understanding its operating mechanism and optimizing the design theoretically. In this article, one-dimensional fluid model is used to analyze the excimer laser discharge mechanism, and the content ratio of fluorine gas, argon gas, and neon gas, which constitute a gas mixture, is studied in a simulated ArF excimer laser system. Particles are treated as a fluid, which significantly reduces the computing cost in fluid model, and therefore is suitable for high-pressure situation. Four equations are included in one-dimensional fluid model, i.e., Boltzmann equation that describes electron energy distribution, ion continue equation that illustrates ion number density, Poisson's equation that shows the distribution of electric field, and photon rate equation that demonstrates laser outputting process. By combining these four equations, high pressure plasma discharge process and particles stimulated radiation process are studied, and calculation continues from one time step to another until the end of discharging process. The result of the calculation presents energy transfer process from three aspects:energy deposition efficiency, ArF* formation, and laser outputting. In the energy deposition process, the energy deposition efficiency is sensitive to the change of fluorine gas ratio while the variation of the content ratio of other two gases has a less influence on this process. In addition, there exists an optimal fluorine gas ratio that causes the highest energy deposition efficiency. In the ArF* formation process, the reaction between excited argon ions and fluorine gas is the main channel that generates ArF*. The proper increasing of fluorine gas ratio helps form ArF*. In the laser outputting process, photon loss is mainly because of the reaction between fluorine negative ions and photons. Therefore superfluous fluorine gas in the mixture leads to less photons, which eventually results in low energy efficiency of laser. By summarizing the three aspects of energy transfer process, the fluorine gas ratio in the gas mixture plays a significant role in determining the energy efficiency of ArF excimer laser system. This theory is verified by experiments, showing that the deviation of the optimized fluorine gas ratio severely reduces energy efficiency. This conclusion can guide us in optimizing the design and steady reliable function of ArF excimer laser system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference11 articles.

1. Vladimir F, Slava R, Robert B, Hong Y, Kevin O, Robert J, Fedor T, Efrain F, Theodore C, Daniel B, William P 1979 IEEE J. Quantum Electron. 15 289

2. Akashi H, Sakai Y, Tagashira H 1995 J. Phys. D:Appl. Phys. 28 445

3. Xiong Z, Kushner M J 2011 J. Appl. Phys. 110 083304

4. Luo S W, Zuo D L, Wang X B 2012 Acta Phys. Sin. 61 045205(in Chinese)[张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕2012物理学报61 045205]

5. Yang C G 2013 Ph. D. Dissertation (Wuhan:Huazhong University of Science and Technology)(in Chinese)[杨晨光2013博士学位论文(武汉:华中科技大学)]

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3