Effects of surface groove micro-structure on ejection from shocked metal surface

Author:

Zhao Xin-Wen ,Li Xin-Zhu ,Wang Xue-Jun ,Song Ping ,Zhang Han-Zhao ,Wu Qiang ,

Abstract

When a shock wave releases from a metal-vacuum interface, some high velocity metal particles will be ejected from the metal surface which generally produce some tiny grooves on the metal surface. This phenomenon is often called the “micro-ejecta”. In this paper, we numerically investigate the effect of the micro-structures of these tiny grooves on the property of the micro-ejecta. To verify the numerical simulation model, a strict Pb micro-ejecta experiment is carried out, where the breakout pressure is about 40 GPa and the Pb target surface roughness is Ra1.6. The dynamic processes of the micro-ejection caused by the real surface groove of experimental target and simplified isosceles groove (both have a depth of 5 μm and wavelength of 75 μm), are respectively simulated by a two-dimensional smooth particle hydrodynamics method, and the effects of surface groove micro-structure on the micro-ejecta properties are examined. The simulation results of the tip velocity and accumulated mass, obtained from the real surface groove model, are in good agreement with the corresponding experimental results measured via DISAR and Asay foil, implying that the numerical result is exact. The tip velocity and accumulated mass caused by the real surface groove are much larger than those caused by the simplified isosceles groove, and a second ejection phenomenon is found in the micro-ejecta process from the real surface groove model. The process can produce some faster ejecta than a single ejecta process and influence the density distribution of the micro-ejection. It indicates that the micro-ejecta process can also be affected by the micro-structure of the metal surface groove, besides perturbation wavelength and surface groove depth.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference27 articles.

1. Dimonte G, Terrones G, Cherne F J, Ramaprabhu P 2013 J. Appl. Phys. 113 024905

2. Meyer K A, Blewett P J 1972 Phys. Fluids 15 753

3. Han C S 1989 Chin. J. High Press. Phys. 3 234 (in Chinese) [韩长生 1989 高压物理学报 3 234]

4. Georgievskaya A, Raevsky V A 2012 AIP Conf. Proc. 1426 1007

5. Walsh J M, Shreffler R G, Willing F J 1953 J. Appl. Phys. 24 349

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3