Laser-driven double shock loading and diagnosis technology for material ejection from surface

Author:

Xi Tao1ORCID,He Anmin2ORCID,Shui Min1,Yu Minghai1,Chu Genbai1,Zhao Yongqiang1,Zhou Weimin1ORCID,Wu Yuchi1ORCID,Wang Pei2ORCID,Xin Jianting1ORCID

Affiliation:

1. Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, CAEP 1 , Mianyang 621900, China

2. Institute of Applied Physics and Computational Mathematics 2 , Beijing 100094, China

Abstract

The physics of shock-induced ejection is a crucial phenomenon in the field of shock compression science and technology. Limited by loading methods, the previous research primarily focused on the physics of ejecta induced by single shockwave, with few data available on multiple shockwave loading conditions. To solve this problem, we proposed a double shockwave production method based on the high-intensity laser facility, which allows the interval time between the shock waves to be adjusted in the nanosecond to microsecond timescale. Meanwhile, we applied loading techniques to study the ejection behavior of metal tin and integrated photonic doppler velocimetry and high-energy x-ray radiography technology to observe the ejection process. By comparing the experimental results for single and double shockwave, the multiple shock-induced ejection features have been clearly confirmed. Our experimental results provide valuable insight into the behavior of ejecta under multiple shockwave loading conditions, which is of great significance for deepening our understanding of the ejection mechanism.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Reference31 articles.

1. Advances in ejecta diagnostics at LLNL;J. Dyn. Behav. Mater.,2017

2. Numerical and theoretical investigations of shock-induced material ejection and ejecta-gas mixing;Sci. Sin.,2018

3. Thick-plate technique for measuring ejecta from shocked surfaces;J. Appl. Phys.,1978

4. Experimental and numerical study of dynamic fragmentation in laser shock-loaded gold and aluminium targets;Comput. Mater. Continua,2011

5. Effects of surface groove micro-structure on ejection from shocked metal surface;Acta Phys. Sin.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3