A new method to analyze the velocity spectrograms of photonic Doppler velocimetry

Author:

Sun Hai-Quan ,Wang Pei ,Chen Da-Wei ,Ma Dong-Jun , ,

Abstract

Ejecta mixing takes place at the interface between metal and gas under shock loading, i.e., the transport process of ejecta from metal surface happens in gas. Ejecta production and transport processes in gas are the focuses and key problems of shock wave physics at present. So far, extensive investigations have been devoted mainly to the ejecta formation from metal surface under shock-loaded conditions, and many experimental measurement techniques have been developed, such as the Asay foil, high-speed camera and holography technique. As a newly developed instrument, photon Doppler velocitymetry (PDV) which allows the simultaneous detection of velocities of multiple particles has been widely used in the dynamic impact areas, especially in micro-jetting and ejecta mixing experiments. Although PDV spectrogram includes abundant information about ejecta particles, it seems to be too hard to obtain the particle velocity history, which embarrasses the analysis and application of PDV spectrogram. In this paper, the equation of particle motion including the effects of aerodynamic damping force, pressure gradient force, and additional mass force is established, and the analytical solutions of the particle position and velocity are derived in the conditions of planar constant flow, constant flow, and constant acceleration flow. According to the analytical solutions, the characteristics of particle movement are analyzed. A simplified formulation of the relaxation time of the particle velocity, which reflects the particle decelerated speed, is given. And it is found that the relaxation time is proportional to the four-thirds power of particle diameter. Based on the characteristics of particle motion in the planar constant flow, a new method is proposed to analyze the spectrogram of PDV. The fastest velocity of particle in the mixing zone is obtained by extracting the upper part of PDV spectrogram. By integrating the fastest velocity, the time evolution of the head of mixing zone is deduced approximately. The thickness of the mixing zone can be obtained by subtracting the free surface position from the head of mixing zone. The relaxation time of particle velocity is inferred by the exponential fitting of the fastest velocity based on the motion equation of the particle in the planar constant flow. Furthermore, the equivalent diameter of the mixing zone head can also be obtained through the relaxation time. Based on the above methods, the spectrograms of various ejection mixing experiments under different shock-loaded conditions and gas environments are analyzed. The time evolutions of the mixing zone and equivalent diameter are presented, and the effects of shock loading strength and post-shock gas temperature on the mixing zone are analyzed. It is found that the deduced equivalent diameter in gas is smaller than that in vacuum, validating the pneumatic breakup of liquid metal particles in gas.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3