Numerical simulations of solid cerium ejecta transporting in vacuum and in non-reactive and reactive gases

Author:

Lyu Sijia1ORCID,Shi Xiaofeng1,Han Dongyan1,Ma Zongqiang1ORCID,Ma Dongjun1ORCID,Sun Zhiyuan1,Sun Haiquan1ORCID,Wang Pei12ORCID

Affiliation:

1. Institute of Applied Physics and Computational Mathematics 1 , Beijing 100094, China

2. Center for Applied Physics and Technology, Peking University 2 , Beijing 100871, China

Abstract

When a shock wave impacts a roughened metal/gas interface, metal ejecta particles emit and transport in the gas. The exchanges of momentum and energy between ejecta particles and the gas occur. If active metal particles transport in the reactive gas, the heat released by a chemical reaction could change these exchanges. In this paper, we use numerical simulations to study solid cerium ejecta transporting in a vacuum, and in non-reactive and reactive gases. In vacuum, the emitted ejecta could self-similarly expand neglecting the particle interaction. In the non-reactive gas (He), ejecta particles slow down by the gas resistance and have the exchanges of momentum and energy with the gas. In the reactive gas (D2), the ejecta particles also slow down. The exothermic reaction could induce the temperature rise of the ejecta and the gas, which could induce changes in physical property values of the gas after the shock wave and the velocity of the shock wave. The numerical result shows that the maximum temperature of the ejecta may appear in the middle of the mixture zone, which may result from the ejecta temperature being controlled by two competitive effects. Furthermore, the maximum ejecta temperature increases rapidly in the beginning and then becomes steady. Finally, the ejecta with a different initial size distribution is investigated. The ejecta with a smaller maximum size has a larger maximum particle temperature, a larger gas temperature after the shock wave, and a larger chemical reaction function of the ejecta at the same moment.

Funder

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3