First-principles calculation of doped GaN/AlN superlattices

Author:

Rao Xue ,Wang Ru-Zhi ,Cao Jue-Xian ,Yan Hui , ,

Abstract

First-principles calculation is a quite powerful tool for explaining experimental phenomena and predicting the properties of new materials. Based on the first-principles calculation within the density functional theory, the energetic stabilities and electronic properties of Mg and Si doped GaN/AlN superlattices with wurtzite and zinc-blende structures are investigated. The results show that there is no variation in formation energy if the doping position is changed when the impurities are doped in the well (GaN) region, and the same situation also happens in the barriers (AlN) region. Thus it is equivalent for dopants to replace Ga atoms in the cation site of wells or Al atoms in the cation site of barrers. However, the formation energies of these dopants in the well region and the barrier region are different. Compared with the formation energy in the barrier region, it is much lower in the well region. That is to say, the impurities in the cation site (MgGa, MgAl, SiGa and SiAl) present lower formation energies in the wells of GaN/AlN SLs with wurtzite and zinc-blende structures. In addition, the impurities in zinc-blende GaN/AlN superlattices present lower formation energy than in the wurtzite structure. The negative formation energy illustrates that the defects are spontaneously formed if Mg-atom is mixed into the wells of the zinc-blende structure. Therefore, in experiment, for the zinc-blende superlattice structure, preparing p-type semiconductor needs less energy than preparing n-type semiconductor. And for the wurtzite superlattice structure, preparing p-type semiconductor needs the same energy as preparing n-type semiconductor. Furthermore, the relationships between the distribution of the electronic states and their structures are analyzed. It is found that the different kinds of dopants lead to different band bendings, owing to the modified polarization fields. The spatial distributions of electrons and holes, plotted by the partial charge densities, reveal that electrons and holes experience redistributions by Si or Mg dopants in different phases. The band gap of doped GaN/AlN superlattice decreases and the projected density of states also accounts for the change of defect formation energy. The calculated results provide a new reference for the fabrication of modulation-doping GaN/AlN SL under desired control, which could be considered to control phase.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3