Investigation of post-annealing enhancement effect of passivation quality of hydrogenated amorphous silicon

Author:

Chen Jian-Hui ,Yang Jing ,Shen Yan-Jiao ,Li Feng ,Chen Jing-Wei ,Liu Hai-Xu ,Xu Ying ,Mai Yao-Hua , ,

Abstract

The excellent surface passivation scheme for suppression of surface recombination is a basic prerequisite to obtain high efficiency solar cells. Particularly, the HIT (heterojunction with intrinsic thin-layer) solar cell, which possesses an abrupt discontinuity of the crystal network at an interface between the crystalline silicon (c-Si) surface and the hydrogenated amorphous silicon (a-Si:H) thin film, usually causes a large density of defects in the bandgap due to a high density of dangling bonds, so it is very important for high energy conversion efficiency to obtain millisecond (ms) range of minority carrier lifetime (i. e. 2 ms). The a-Si:H, due to its excellent passivation properties obtained at low deposition temperatures and also mature processing, is still the best candidate materials for silicon HIT solar cell. Deposition of a transparent conductive oxide (TCO), such as indium tin oxide (ITO), has to be used to improve the carrier transport, since the lateral conductivity of a-Si:H is very poor. Usually, ITO is deposited by magnetron sputtering, but damage of a-Si:H layers by sputtering-induced ion bombardment inevitably occurs, thus triggering the serious degradation of the minority carrier lifetime, i. e., a loss in wafer passivation. Fortunately, this damage can be often recovered by some post-annealing. In this paper, however, the situation is different, and it is found that the minority carrier lifetime of ITO/a-Si:H/c-Si/a-Si:H heterojunction has been drastically enhanced by post-annealing after sputtering ITO on a- Si:H/c-Si/a-Si:H heterojunction (from 1.7 ms to 4.0 ms), not just recovering. It is very important to investigate how post-annealing enhances the lifetime and its physics nature. Combining the two experimental ways of HF treatment and vacuum annealing, three possible reasons for this enhancement effect (the field effect at the ITO/a-Si:H interface, the surface reaction-layer resulting from annealing in air, and the optimization of a-Si:H material itself) have been studied, suggesting this is irrelevant to the first two. The influence of post-annealing on a-Si:H/c-Si/a-Si:H heterojunction deposited at different temperatures has also been investigated. It is found that the remarkable enhancement effect of post-annealing is for low growth temperature(175 ℃) and not for high growth temperature(200 ℃), with the confirmation of an effective way for high quality passivation using growth at low temperature and then annealed at high temperature. Moreover, the configuration of a-Si:H at different growth temperatures between afore and after annealing has been discussed by an application of Fourier transform infrared (FTIR) spectroscopy. It is shown that the large increase of the lifetime of the heterojunction after annealing results from the improvement of microstructure of a-Si:H itself, which is essentially a competitive balance of the dominant role of some micro-factors, including hydrogen content, hydrogen bonding and network disorder in amorphous silicon film determined by the optimized matching between the growth temperature of a-Si:H materials and the annealing temperature of the heterojunction. An optimum control for this balance point is the essential cause of lifetime enhancement.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3