Two-dimensional analytical model of dual material gate strained Si SOI MOSFET with asymmetric Halo

Author:

Xin Yan-Hui ,Liu Hong-Xia ,Fan Xiao-Jiao ,Zhuo Qing-Qing ,

Abstract

In order to improve the driving current and suppress the SCE and DIBL effect of deep submicron SOI MOSFET, dual material gate strained Si SOI MOSFET structure with asymmetric Halo has been proposed. An impurity with a higher concentration is injected into the channel end near the source and the two materials with different work functions are put together to form the gate. By considering both the characteristics of the new device structure and the influence of strain, the flatband voltage and built-in potential have been corrected. A two-dimensional analytical model for the surface potential and the threshold voltage is proposed by solving Poisson’s equation. The effect of Ge fractions in the relaxed layer on surface potential, surface electric field, and threshold voltage is investigated. The model proposed in this paper takes into account the effects of gate metals length and their work functions. Results show that the novel device can increase carrier transport speed and suppress the SCE and DIBL effects, which provides a valuable reference to the physical parameter design.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3