Autler-Townes splitting of ultracold cesium Rydberg atoms

Author:

Xue Yong-Mei ,Hao Li-Ping ,Jiao Yue-Chun ,Han Xiao-Xuan ,Bai Su-Ying ,  Zhao Jian-Ming ,Jia Suo-Tang , ,

Abstract

Autler-Townes (A-T) splitting, known as an AC Stark effect, shows a change of an absorption/emission spectral line of a probe beam when an oscillating field is tuned in resonance with the atomic or molecular transition. The A-T splitting is observed in different three-level atoms and widely investigated in a vapor cell and in a magneto-optical trap (MOT). The A-T splitting plays an important role in the atom-based microwave electric-field measurements where a cascade three-level system involving Rydberg state is adopted. In this work, an A-T splitting is observed in an ultracold cesium Rydberg gas, which is cooled down to about 100 pK and center density is about 1010 cm-3 in a conventional MOT by using the laser cooling technology. We present the A-T spectrum in a ladder three-level atomic system involving a 34D5/2 Rydberg state. The cesium ground state (6S1/2), excited state (6P3/2) and Rydberg state (34D5/2) constitute a Rydberg three-level system. A coupling laser, locked to the Rydberg transition by using a Rydberg electromagnetically induced transparency signal that is obtained from a cesium room-temperature vapor cell, couples 6P3/2 (F'=5) 34D5/2 Rydberg transition. A weak probe laser, stabilized to a ground-state transition by using a polarization spectroscopy, is swept, covering the transition 6S1/2 (F=4) 6P3/2 (F'=5) with a double-passed acousto-optic modulator. The probe and coupling lasers are counter-propagated through the MOT center. The power of probe light is 200 pW, corresponding Rabi frequency p=21.05 MHz. During the experiment, 50 s after turning off the trapping laser, both the coupling and probe beams are switched on and last 100 s. The A-T spectrum as a function of the probe detuning is detected with a single-photon counter module detector. We use Gaussian multiple peak fitting to obtain the positions of the A-T peaks and the A-T splitting. The measured A-T splitting is proportional to the Rabi frequency of the coupling light. We numerically solve the density matrix equations to obtain the A-T spectrum, and the calculations reproduce A-T spectra well. The measured A-T splitting shows good agreement with the theoretical calculation for Rabi frequency of the coupling light c29 MHz. The A-T splitting is less than the calculation for the case of c29 MHz, the deviation is mainly attributed to the increased dephasing rate induced by the strong interaction between Rydberg atoms, whose number increases with the coupling laser Rabi frequency. In this work, the adopted method for the cascade three-level system involving Rydberg state is also suitable for -and V-type cases.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3