Total ionizing dose radiation effects in foue-transistor complementary metal oxide semiconductor image sensors

Author:

Wang Fan ,Li Yu-Dong ,Guo Qi ,Wang Bo ,Zhang Xing-Yao ,Wen Lin ,He Cheng-Fa , ,

Abstract

Radiation effects on four-transistor (4 T) active pixel sensor complementary metal-oxide-semiconductor (CMOS) image sensor induced by -ray are presented. The samples are 4 megapixels resolution CMOS image sensor using 11 upm pitch high dynamic 4 T pixels. They are manufactured with 0.18 upm specialized CMOS image sensortechnology. Three samples have been exposed to 200 krad(Si) 60Co -ray with different biasing condition (1# is static-biased, 2# dynamic-biased, and 3# is grounded during irradiation), and the dose rate is 50 rad(Si)/s. The influences of radiation on full well charge capacity, dark current, and conversion gain of the device are investigated. Experimental result shows that the conversion gain is not sensitive to the ionizing radiation, and it is mainly determined by the CMOS digital or analog circuits. It is known that the total ionizing dose for induced degradation in deep submicron MOSFET is negligible and so there is almost no radiation effect on the digital or analog circuits exposed to the ionizing radiation. Therefore, conversion gain does not have obvious degradation after irradiation. While full well charge capacity has a degradation after irradiation, which is due to the change of TG channel doping profile induced by the radiation. As the dose increases, dark current increases rapidly. The main source of dark current in 4 T CMOS image sensor is the current from STI interface and TG-PD overlap region. Experimental result also shows that different from 3 T CMOS image sensor, there is no biasing effect in 4 T CMOS image sensor. This is because for the 4 T CMOS image sensor most of the degradation come from STI interface and TG-PD overlap region, while biasing condition almost has no influence on both ofthem.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference15 articles.

1. Furuta M, Nishikawa Y, Inoue T, Kawahito S 2007 IEEE J. Solid State Circuits 42 766

2. Cao C, Zhang B, Wu L S, Li N, Wang J F 2014 Chin. Phys. B 23 124215

3. Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ma L Y, Sun J, Wang H J, Cong Z C, Ma W Y 2014 Acta Phys. Sin. 63 56102 (in Chinese) [汪波, 李豫东, 郭旗, 刘昌举, 文林, 玛丽娅, 孙静, 王海娇, 丛忠超, 马武英 2014 物理学报 63 56102]

4. Claeys C, Simoen E (Translated by Liu Z L) 2008 Radiation Effects in Advanced Semiconductor Materials and Devices (Beijing: National Defence Industry Press) p20 (in Chinese) [Claeys C, Simoen E 著, (刘忠立 译) 2008先进半导体材料及器件的辐射效应(北京:国防工业出版社) 第20页]

5. Hopkinson G 2000 IEEE Trans. Nucl. Sci. 47 2480

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3