Barrier and well thickness designing of InGaN/GaN multiple quantum well for better performances of GaN based laser diode

Author:

Zhou Mei ,Zhao De-Gang , ,

Abstract

The effects of barrier and well thickness in InGaN/GaN (with in content of 15%) multiple quantum well (MQW) on the performances of GaN based laser diode (LD) are investigated by using LASTIP software, and the relevant physical mechanisms are discussed. It is found that when the barrier-thickness in InGaN/GaN MQW is fixed to be 7 nm, for the well thickness values of 3.0, 3.5, 4.0, 4.5, and 5.0 nm, the threshold currents of LD are 76.31, 67.96, 57.60, 64.62, and 74.59 mA, and the output light powers of LD are 12.05, 15.64, 24.70, 18.21, and 11.35 mW under an injection current of 100 mA, respectively. It indicates that too thick or too thin well may lead to a higher threshold current and a lower output power of GaN based LD. A high performance device can be obtained by using an optimized well thickness of around 4.0 nm. It is found that the LD performance is degraded by using too thin well in the device structure mainly due to the high leakage current, while strong polarization will lead to the decrease of overlap integral and luminescence intensity if the well layer is too thick, and thus a poor performance is obtained. It is found that the LD performance can be improved obviously by appropriately increasing barrier thickness from 7 nm to 15 nm. When the barrier thickness in InGaN/GaN MQW is fixed at 15 nm and the well thickness values are 3.0, 3.5, 4.0, 4.5 and 5.0 nm, the threshold currents of LD are 59.54, 52.42, 52.17, 51.38, and 58.99 mA, and the output light powers of LD are 36.12, 39.69, 40.79, 40.27, and 33.19 mW under an injection current of 100 mA, respectively, i.e., LD device parameters are improved. It suggests that the higher performances of GaN based laser diode can be realized by appropriately increasing the thickness of barrier when the thickness of well is optimized to be around 4 nm.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3