Lower threshold current density of GaN-based blue laser diodes by suppressing the nonradiative recombination in a multiple quantum well

Author:

Liang Feng1,Zhao Degang12,Liu Zongshun1,Chen Ping1,Yang Jing1

Affiliation:

1. Institute of Semiconductors, Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

Abstract

The influence of the nonradiative recombination in a multiple quantum well of GaN-based blue laser diodes (LDs) has been are studied experimentally and theoretically by analyzing the optical and electrical properties of LDs with various thickness and indium content of quantum wells (QWs). It is found that when keeping the LD emission wavelength nearly unchanged, the LD device performance with thinner QW and higher indium content of InGaN QWs is much better than the LD with thicker QW and lower indium content, having smaller threshold current density, higher output optical power and larger slope efficiency. Typically, the threshold current density is as low as 0.69 kA/cm2, and the corresponding threshold current is only 250 mA. The lifetime is more than 10,000 hours at a fixed injection current of 1.2 A under a room-temperature continuous-wave operation. Characteristics of photoluminescence (PL) microscopy images, temperature dependent PL spectra, time-resolved PL and electroluminescence spectra demonstrate that a reduction of the nonradiative recombination centers and an improvement of homogeneity in QWs are the main reason for the performance improvement of GaN-based LD using thinner QW layers with a higher indium content in a certain range. Moreover, theoretical calculation results demonstrate that using a thinner quantum well is also helpful for improving the device performance if the change of alloy material quality is considered during the calculation.

Funder

Beijing Municipal Science and Technology Commission

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Beijing Nova Program

Strategic Priority Research Program of Chinese Academy of Sciences

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3