Mechanism of NiSi0.7Ge0.3 epitaxial growth by Al interlayer mediation at 700 ℃

Author:

Ping Yun-Xia ,Wang Man-Le ,Meng Xiao-Ran ,Hou Chun-Lei ,Yu Wen-Jie ,Xue Zhong-Ying ,Wei Xing ,Zhang Miao ,Di Zeng-Feng ,Zhang Bo , ,

Abstract

The formation of Nickel based germanosilicides (NiSiGe) has attracted growing interest in the state-of-the-art metal oxide semiconductor field effect transistor (MOSFET) technology, because silicon-germanium alloy (Si1-xGex) is used as embedded source/drain stressor or channel material to enhance the hole mobility in the channel region. However, a major problem of NiSiGe film is that it has a poor thermal stability after annealing at high temperature (550 ℃), which leads to its agglomeration. In this work, we study the reaction between Ni and Si0.7Ge0.3 in the presence of an Al interlayer. Pure Ni (10 nm) film and Ni (10 nm)/Al (3 nm) bi-layers are deposited respectively on Si0.7Ge0.3 substrates by electron beam evaporation. Solid-phase reactions between Ni or Ni/Al and Si0.7Ge0.3 during rapid thermal processing in N2 ambient for 30 s are studied at 700 ℃. The un-reacted metal is subsequently etched in H2SO4 solution. The NiSi0.7Ge0.3 films are characterized by Rutherford backscattering spectrometry (RBS), crosssection transmission electron microscopy (XTEM), energy dispersive X-ray spectrometer (EDX), and secondary ion mass spectroscopy (SIMS) techniques. For the Ni/Si0.7Ge0.3 sample, the segregation of Ge at grain boundaries of nickel germanosilicides during the interfacial reactions of Ni with Si0.7Ge0.3 films and the subsequent formation of Ge-rich Si1-wGew (w0.3) are confirmed by the RBS and XTEM measurements. However, in the case of Al incorporation, a very uniform and smooth NiSi0.7Ge0.3 film is obtained with atomic NiSi0.7Ge0.3/Si0.7Ge0.3 interface. The orthorhombic NiSi0.7Ge0.3 is finally epitaxial grown on cubic Si0.7Ge0.3substrate tilted at a small as demonstrated by the High resolution XTEM. Furthermore, based on the EDX and SIMS measurements, it is found that most of the Al atoms from the original interlayer diffuse towards the NiSi0.7Ge0.3 surface, and finally form an oxide mixture layer. It is proposed that the addition of Al reduce Ni diffusion, balance the Ni/Si0.7Ge0.3 reaction and mediate the NiSi0.7Ge0.3 lattice constant. In addition, the main mechanism of epitaxial growth of NiSi0.7Ge0.3 film is analyzed in detail. In summary, Al mediation is experimentally proved to induce the epitaxial growth of uniform and smooth NiSi0.7Ge0.3 layer on relaxed Si0.7Ge0.3 substrate, providing a potential method of achieving source/drain contact material for SiGe complementary metal oxide semiconductor devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3