The Deployment of Deep Learning Models for Performance Optimization and Failure Prevention of Electric Submersible Pumps

Author:

Dachanuwattana Silpakorn1,Ratanatanyong Suwitcha1,Wasanapradit Tawan1,Vimolsubsin Pojana1,Kulchanyavivat Sawin1

Affiliation:

1. Mubadala Petroleum

Abstract

Abstract Real-time sensors are crucial for monitoring electrical submersible pump (ESP) operation. However, manually analyzing the whole data from these sensors is virtually impossible due to its overwhelming volume. Artificial intelligence (AI) is a game-changing tool that can leverage the big data from ESP sensors more efficiently. Coupled with ESP knowledge, AI could reveal insights into ESP behaviors, well performances, and reservoirs dynamics, leading to ESP life extension and better production optimization. In this paper, we present the development and deployment of an AI workflow to enhance ESP surveillance. The workflow is developed in-house using the Python programming language and consists of the following four main modules: Data ingestion – to ingest all ESP-relevant databases Data preprocess – to transform the databases in the format ready for AI modelling AI modelling – to experiment several AI models, e.g., to detect ESP critical events, and predict ESP run life. Deployment – To automatically notify ESP critical events and visualize insight from the AI models The application of a hierarchical clustering algorithm reveals that the ESP run life in our fields are most influenced by gas production. Then, after more than 1000 runs of experiments, we achieve a deep learning model to predict whether an ESP will fail within the next 90 days. We also develop a module to automate nodal analysis as part of the AI workflow. Combining this physics-based model with a data-driven approach, the resulting AI models can accurately detect ESP critical events, such as ESP degradation, imminent gas lock, and sand production. To deploy the AI workflow, we build a dashboard to effectively visualize actionable insights from the AI models on our local server. The workflow sends notifications of ESP critical events to users for prompt troubleshooting actions and collects user feedbacks for improvement of the AI models in the next model development cycle. This paper demonstrates a holistic approach to develop a closed-loop ESP surveillance workflow that integrates the powers of AI, automation, and ESP knowledge including nodal analysis. The AI workflow potentially creates value of several million dollars or higher per year by extending ESP run lives and optimizing production. The lessons learnt from this AI workflow development are shared to assist the development and deploying of similar AI methods throughout the oil and gas industry.

Publisher

OTC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3