Smart Alarming for Intelligent Surveillance of Electrical Submersible Pump Systems

Author:

Adesanwo Moradeyo1,Bello Oladele1,Lazarus Sony1,Denney Tommy1

Affiliation:

1. Baker Hughes Incorporated

Abstract

Abstract Electrical submersible pump (ESP) technology has evolved to become a critical component in many production operations and well productivity enhancement. However, one of the important challenges in real-time ESP-enabled well management is the implementation of intelligent systems that can assist human operators in making control decisions. Modern technological advances have resulted in increasingly complicated processes that present considerable challenges in performance analysis and well management for successful operation of electrical submersible pumps. Given the size, scope, and complexity of modern engineered electrical submersible pump systems, it is becoming significantly more difficult for engineers to anticipate, diagnose and control serious abnormal events in a timely manner. Failure of the operator to exercise the appropriate mitigation actions often has an adverse effect on the process safety quality, run life, surface hardware and downhole equipment. Hence, there exist considerable incentives to develop intelligent alarm systems for automating electrical submersible pump system parameters estimation and optimization. The difficulties associated with implementing intelligent alarms and the opportunities for improvements are even greater in the advanced wells equipped with electrical submersible pumps due to complex flow and transport process challenges. In this paper, a state estimator is implemented in the form of data assimilation algorithm using a variety of data-driven models and continued ESP operations performance properties measurements. The data assimilation3 estimates continuously the state variables of the data-driven ESP models to provide a feedback to an online intelligent alarm monitoring system. The intelligent alarm surveillance system workflow combines streaming surface controller data, well head data and sensor data to intelligently define thresholds and determine when a given measurement is out of range and human intervention is needed. Further multi-signal data analysis is employed to characterize given events and perform dynamical optimization (based on define objective functions and operations constraints) for recommending real-time controller set point updating and corrective actions during real time ESP operations. Such optimization framework has the potential to improve production while simultaneously providing cost savings by reducing remote human intervention and the deployment of personnel to field locations. The web-based alarm surveillance system has been successfully tested in multiple fields to verify the functionalities of the alarming system. Numerous abnormal events were identified in the field and faults signatures and trends were stored in the knowledge database along with the corresponding alarm mitigation strategy. The smart alarming produces superior results in several case studies performed on multiple Permian basin wells and fields. This new smart alarming approach will greatly help in the increasing real time artificial lift ESP management over existing conventional basic ESP alarm monitoring methods.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3