Electrical Submersible Pump Prognostics and Health Monitoring Using Machine Learning and Natural Language Processing

Author:

Ambade Amey1,Karnik Saniya1,Songchitruksa Praprut1,Sinha Rajeev Ranjan1,Gupta Supriya1

Affiliation:

1. Schlumberger

Abstract

Abstract Electrical Submersible Pump (ESP) systems efficiently pump high volumes of production fluids from the wellbore to the surface. They are extensively used in the oil and gas industry due to their adaptability, low maintenance, safety, relatively low environmental impact. They require specific operating conditions with respect to the power, fluid level and fluid content. Oilfield operation workflows often require extensive surveillance and monitoring by subject-matter experts (SMEs). Detecting issues like formation of unwanted gas and emulsions in ESPs requires constant analysis of downhole data by SMEs. The lack of adequate and accurate monitoring of the downhole pumps can lead to low efficiency, high lifting costs, and frequent repair and replacements. There are 3 workflows described in the paper which demonstrate that the maintenance costs of the ESPs can be significantly reduced, and production optimized with the augmentation of machine learning approaches typically unused in ESP surveillance and failure analysis. Downtime due to ESP failures cause loss of production, disrupt logistics planning and require weeks for replacement. Pull-out due to poor reservoir conditions complicates the inventory issue. Therefore, it is desirable to reduce workover time and optimize production by providing early warning of ESP failures (Fig. 1).

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3