Encapsulating commercial accelerometers with epoxy and fluoroelastomer for harsh hydrocarbon fluid environment

Author:

Wankhede Sahil P.,Du Xian,Brashler Keith W.,Ba’adani Mohammad M.,Turcan Doru C.,Shehri Ali H.,Youcef-Toumi Kamal

Abstract

AbstractTraditionally, in the oil and gas industry, accelerometers are mounted externally on motors for condition monitoring of vertically suspended, closed suction hydrocarbon pumps due to their inability to withstand harsh downhole environments, preventing the detection of impeller failures. This study addresses the need for encapsulation solutions for accelerometers submerged in hydrocarbon fluid environments. It evaluates the feasibility of epoxy and fluoroelastomer as encapsulation materials for long-term immersion in high-temperature hydrocarbon fluid and determines their impact on the accelerometer's performance. Extensive testing involved submersion in high-temperature hydrocarbon fluid at 150 °C for over 10,000 h and six months in brine. Material characterization, including mass variation, microscopic imaging, and FTIR spectroscopy, revealed negligible degradation. Encapsulated accelerometers effectively detected vibrations with an acceptable alteration in amplitude. In comparison with commercial alternatives, our encapsulation outperformed them. While oil traces became evident within just 24 h in the alternatives, our solution exhibited no signs of leakage. This research pioneers a novel packaging solution employing epoxy and fluoroelastomer for side-exit commercial sensors tailored for high-temperature hydrocarbon fluid applications, addressing a critical gap in the industry. Our work enhances reliability and safety for vertical oil pump condition monitoring in downhole applications, benefiting the oil and gas sector.

Funder

Saudi Arabian Oil Company

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3