Affiliation:
1. School of Management, Harbin Institute of Technology, Harbin, P. R. China
2. School of Management, Guangzhou University, Guangzhou, P. R. China
3. Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, P. R. China
Abstract
Addressing the multi-dimensional challenges to promote pavement sustainability requires the development of an optimization approach by simultaneously taking into account future pavement conditions for pavement maintenance with the capability to search and determine optimal pavement maintenance strategies. Thus, this research presents an integrated approach based on the Markov chain and Particle swarm optimization algorithm which aims to consider the predicted pavement condition and optimize the pavement maintenance strategies during operation when applied in the maintenance management of a road pavement section. A case study is conducted for testing the capability of the proposed integrated approach based on two maintenance perspectives. For case 1, maintenance activities mainly occur in TM20, TM31, and TM41, with the maximum maintenance mileage reaching 88.49 miles, 50.89 miles, and 20.91 miles, respectively. For case 2, the largest annual maintenance cost in the first year is $15.16 million with four types of maintenance activities. Thereafter, the maintenance activities are performed at TM10, TM31, and TM41, respectively. The results obtained, compared with the linear program, show the integrated approach is effective and reliable for determining the maintenance strategy that can be employed to promote pavement sustainability.
Publisher
Vilnius Gediminas Technical University
Subject
Strategy and Management,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献