INTEGRATING ENHANCED OPTIMIZATION WITH FINITE ELEMENT ANALYSIS FOR DESIGNING STEEL STRUCTURE WEIGHT UNDER MULTIPLE CONSTRAINTS

Author:

Truong Dinh-Nhat1,Chou Jui-Sheng2

Affiliation:

1. Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Department of Civil Engineering, University of Architecture Ho Chi Minh City, Ho Chi Minh City, Viet Nam

2. Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

Abstract

Real-world optimization problems are ubiquitous across scientific domains, and many engineering challenges can be reimagined as optimization problems with relative ease. Consequently, researchers have focused on developing optimizers to tackle these challenges. The Snake Optimizer (SO) is an effective tool for solving complex optimization problems, drawing inspiration from snake patterns. However, the original SO requires the specification of six specific parameters to operate efficiently. In response to this, enhanced snake optimizers, namely ESO1 and ESO2, were developed in this study. In contrast to the original SO, ESO1 and ESO2 rely on a single set of parameters determined through sensitivity analysis when solving mathematical functions. This streamlined approach simplifies the application of ESOs for users dealing with optimization problems. ESO1 employs a logistic map to initialize populations, while ESO2 further refines ESO1 by integrating a Lévy flight to simulate snake movements during food searches. These enhanced optimizers were compared against the standard SO and 12 other established optimization methods to assess their performance. ESO1 significantly outperforms other algorithms in 15, 16, 13, 15, 21, 16, 24, 16, 19, 18, 13, 15, and 22 out of 24 mathematical functions. Similarly, ESO2 outperforms them in 16, 17, 18, 22, 23, 23, 24, 20, 19, 20, 17, 22, and 23 functions. Moreover, ESO1 and ESO2 were applied to solve complex structural optimization problems, where they outperformed existing methods. Notably, ESO2 generated solutions that were, on average, 1.16%, 0.70%, 2.34%, 3.68%, and 6.71% lighter than those produced by SO, and 0.79%, 0.54%, 1.28%, 1.70%, and 1.60% lighter than those of ESO1 for respective problems. This study pioneers the mathematical evaluation of ESOs and their integration with the finite element method for structural weight design optimization, establishing ESO2 as an effective tool for solving engineering problems.

Publisher

Vilnius Gediminas Technical University

Subject

Strategy and Management,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3