Distinguishing magnetically and electrically charged Reissner–Nordström black holes by magnetized particle motion

Author:

Juraeva Nozima,Rayimbaev JavlonORCID,Abdujabbarov Ahmadjon,Ahmedov Bobomurat,Palvanov Satimbay

Abstract

AbstractIn the present paper, we investigate the dynamics of magnetized particles around magnetically and electrically Reissner–Nordström (RN) black hole. The main idea of the work is to distinguish the effects of electric and magnetic charges of the RN black hole and spin of the rotating Kerr black hole through the dynamics of the magnetized particles. In this study, we have treated a magnetized neutron star as a magnetized test particle, in particular, the magnetar SGR (PSR) J1745-2900 orbiting around the supermassive black hole Sagittarius A* (SMBH SgrA*) with the magnetic interaction parameter $$b=0.716$$ b = 0.716 and the parameter $$\beta =10.2$$ β = 10.2 . The comparison of the effects of the magnetic and electric charges, and magnetic interaction parameters on the dynamics of the magnetar modeled as a magnetized particle near the SMBH Sgr A* has shown that the magnetic charge of the RN black hole can mimic the spin parameter of a rotating Kerr black hole up to $$a/M \simeq 0.82$$ a / M 0.82 . The external magnetic field can mimic the magnetic charge of the RN black hole up to $$Q_m/M=0.4465$$ Q m / M = 0.4465 . We have shown that the electric charge of the RN black hole can mimic the black hole magnetic charge up to $$Q_m/M=0.5482$$ Q m / M = 0.5482 and the magnetic field interaction with the magnetized particle acts against the increase of the mimicking value of the black hole spin parameter. The studies may be helpful to explain the observability of radio pulsars around the SMBH SgrA* system and taking it as a real astrophysical laboratory to get more precise constraints on the central black hole and dominated parameters of the alternate gravity. Finally, we have investigated the effects of magnetic and electric charge of the RN black hole in the center-of-mass energy of head-on collisions of magnetized particles with neutral, electrically charged, and magnetized particles. Both electric and magnetic charges of the RN black hole would lead to an increase in the center of the mass–energy of the collisions.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3