Circular motion and collisions of particles with magnetic dipole moment and electric charge in dipolar magnetosphere around Schwarzschild black holes

Author:

Khan Saeed UllahORCID,Abdurkhmonov Ozodbek,Rayimbaev Javlon,Ahmedov Saidmuhammad,Turaev Yunus,Muminov Sokhibjan

Abstract

AbstractNo-hair theorem indicates that black holes cannot have their own magnetic dipole moment. They can be weakly magnetized in binary systems with a neutron star companion and an accretion disc of charged particles. A simple model suggested by Petterson states that a current loop accreting a Schwarzschild black hole generates dipole-like magnetic fields in the outer region of the loop that are uniform in the inner region. This study considers circular motion and collisions of charged test particles with magnetic dipole moments in the inner and outer regions. First, we derive the effective potential taking into account the magnetic interactions between external magnetic fields with electric charge and the magnetic dipole moment of the particle. We investigate the possible innermost stable circular orbits (ISCOs) of the charged and magnetized particles orbiting the magnetized Schwarzschild black hole inside and outside the current loop. Finally, we explore the collisional processes of these particles near the black hole horizons, examining the effects of magnetic interactions on the critical angular momentum of particles that may collide and the center of mass energy of the colliding particles. We discuss astrophysical relevant objects with magnetic dipole moment and electric charge: magnetized neutron stars, white dwarfs, rotating stellar-mass black holes, electrons, and protons, and also estimate the interaction parameters for them.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics and collision of particles in modified black-bounce geometry;The European Physical Journal C;2024-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3