Deeply learning deep inelastic scattering kinematics

Author:

Diefenthaler Markus,Farhat Abdullah,Verbytskyi Andrii,Xu Yuesheng

Abstract

AbstractWe study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables $$Q^2$$ Q 2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection of a training set, the neural networks sufficiently surpass all classical reconstruction methods on most of the kinematic range considered. Rapid access to large samples of simulated data and the ability of neural networks to effectively extract information from large data sets, both suggest that deep learning techniques to reconstruct DIS kinematics can serve as a rigorous method to combine and outperform the classical reconstruction methods.

Funder

US Department of Energy, Office of Science, Office of Nuclear Physics

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference77 articles.

1. B.H. Wiik et al., HERA: A Proposal for a Large Electron Proton Colliding Beam Facility at DESY (1981). https://old.inspirehep.net/record/19436/files/Fulltext.pdf

2. DUNE Coll., B. Abi et al., Volume I. Introduction to DUNE. JINST 15, T08008 (2020). https://doi.org/10.1088/1748-0221/15/08/T08008. arXiv:2002.0296

3. F. Gautheron et al., COMPASS-II Proposal (2010). https://cds.cern.ch/record/1265628/files/SPSC-P-340.pdf

4. J. Arrington et al., Physics with CEBAF at 12 GeV and Future Opportunities (2021). arXiv:2112.0006

5. E.C. Aschenauer, R.S. Thorne, R. Yoshida, PDG Chapter 18: Structure Functions. PTEP (2022). https://doi.org/10.1093/ptep/ptac097

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diffusion model approach to simulating electron-proton scattering events;Physical Review D;2024-07-31

2. The present and future of QCD;Nuclear Physics A;2024-07

3. Artificial Intelligence for the Electron Ion Collider (AI4EIC);Computing and Software for Big Science;2024-02-15

4. ELUQuant: event-level uncertainty quantification in deep inelastic scattering;Machine Learning: Science and Technology;2024-01-30

5. Neutrino-tagged jets at the Electron-Ion Collider;Physical Review D;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3