Diffusion model approach to simulating electron-proton scattering events

Author:

Devlin Peter1,Qiu Jian-Wei1ORCID,Ringer Felix12ORCID,Sato Nobuo1

Affiliation:

1. Thomas Jefferson National Accelerator Facility

2. Old Dominion University

Abstract

Generative artificial intelligence is a fast-growing area of research offering various avenues for exploration in high-energy nuclear physics. In this work, we explore the use of generative models for simulating electron-proton collisions relevant to experiments like the Continuous Electron Beam Accelerator Facility and the future Electron-Ion Collider (EIC). These experiments play a critical role in advancing our understanding of nucleons and nuclei in terms of quark and gluon degrees of freedom. The use of generative models for simulating collider events faces several challenges such as the sparsity of the data, the presence of global or eventwide constraints, and steeply falling particle distributions. In this work, we focus on the implementation of diffusion models for the simulation of electron-proton scattering events at EIC energies. Our results demonstrate that diffusion models can reproduce relevant observables such as momentum distributions and correlations of particles, momentum sum rules, and the leading electron kinematics, all of which are of particular interest in electron-proton collisions. Although the sampling process is relatively slow compared to other machine-learning architectures, we find diffusion models can generate high-quality samples. We foresee various applications of our work including inference for nuclear structure, interpretable generative machine learning, and searches of physics beyond the Standard Model. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Office of Science

Nuclear Physics

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3