Inelastic N$$_2$$+H$$_2$$ collisions and quantum-classical rate coefficients: large datasets and machine learning predictions

Author:

Hong QizhenORCID,Storchi LorianoORCID,Bartolomei MassimilianoORCID,Pirani FernandoORCID,Sun QuanhuaORCID,Coletti CeciliaORCID

Abstract

Abstract Rate coefficients for vibrational energy transfer are calculated for collisions between molecular nitrogen and hydrogen in a wide range of temperature and of initial vibrational states ($$v\le 40$$ v 40 for N$$_2$$ 2 and $$w\le 10$$ w 10 for H$$_2$$ 2 ). These data are needed for the modelling of discharges in N$$_2$$ 2 /H$$_2$$ 2 plasma or of atmospheric and interstellar medium chemistry in different temperature ranges. The calculations were performed by a mixed quantum-classical method, to recover quantum effects associated with the vibrational motion, on a refined potential energy surface. The obtained rates present striking discrepancies with those evaluated by first-order perturbation theories, like the SSH (Schwartz, Slavsky, Herzfeld) theory, which are often adopted in kinetic modelling. In addition, we present a detailed, though preliminary, analysis on the performance of different Machine Learning models based on the Gaussian Process or Neural Network techniques to produce complete datasets of inelastic scattering rate coefficients. Eventually, by using the selected models, we give the complete dataset (i.e., covering the whole vibrational ladder) of rate coefficients for the $$\textrm{N}_2(v)+\textrm{H}_2(0) \longrightarrow \textrm{N}_2(v-\Delta v)+\textrm{H}_2(0)$$ N 2 ( v ) + H 2 ( 0 ) N 2 ( v - Δ v ) + H 2 ( 0 ) , $$\Delta v=1,2,3$$ Δ v = 1 , 2 , 3 processes. Graphical abstract

Funder

China Postdoctoral Science Foundation

Strategic Priority Research Program of Chinese Academy of Sciences

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3