State-to-state dynamics and machine learning predictions of inelastic and reactive O(3P) + CO(1∑+) collisions relevant to hypersonic flows

Author:

Huang Xia1ORCID,Cheng Xinlu12ORCID

Affiliation:

1. Institute of Atomic and Molecular Physics, Sichuan University 1 , Chengdu 610065, China

2. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University 2 , Chengdu 610065, China

Abstract

The state-to-state (STS) inelastic energy transfer and O-atom exchange reaction between O and CO(v), as two fundamental processes in non-equilibrium air flow around spacecraft entering Mars’ atmosphere, yield the same products and both make significant contributions to the O + CO(v) → O + CO(v′) collisions. The inelastic energy transfer competes with the O-atom exchange reaction. The detailed reaction mechanisms of these two elementary processes and their specific contributions to the CO relaxation process are still unclear. To address these concerns, we performed systematic investigations on the 3A′ and 3A″ potential energy surfaces (PESs) of CO2 using quasi-classical trajectory (QCT) calculations. Analysis of the collision mechanisms reveals that inelastic collisions have an apparent PES preference (i.e., they tend to occur on the 3A′ PES), while reactive collisions do not. Reactive rates decrease significantly when the total collision energy approaches dissociation energy, which differs from the inelastic process. Inelastic rates are generally lower than the reactive rates below ∼10 000 K, except for single quantum jumps, whereas the reverse is observed above ∼10 000 K. In addition, by combining QCT with convolutional neural networks, we have established neural network (NN)-STS1 (inelastic) and NN-STS2 (reactive) models to generate all possible STS cross sections. The NN-based models accurately reproduce the results calculated from QCT calculations. In this study, all calculations have been focused on analyzing collisions at the ground rotational level.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Energy Reaction Dynamics of N3;The Journal of Physical Chemistry A;2024-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3