Abstract
AbstractThe complementarity and substitutability between products are essential concepts in retail and marketing. Qualitatively, two products are said to be substitutable if a customer can replace one product by the other, while they are complementary if they tend to be bought together. In this article, we take a network perspective to help automatically identify complements and substitutes from sales transaction data. Starting from a bipartite product-purchase network representation, with both transaction nodes and product nodes, we develop appropriate null models to infer significant relations, either complements or substitutes, between products, and design measures based on random walks to quantify their importance. The resulting unipartite networks between products are then analysed with community detection methods, in order to find groups of similar products for the different types of relationships. The results are validated by combining observations from a real-world basket dataset with the existing product hierarchy, as well as a large-scale flavour compound and recipe dataset.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Science Applications,Modeling and Simulation
Reference49 articles.
1. Elrod T, Russell G, Shocker A, Andrews R, Bacon L, Bayus B, Carroll J, Johnson R, Kamakura W, Lenk P, Mazanec J, Rao V, Shankar V (2002) Inferring market structure from customer response to competing and complementary products. Mark Lett 13:221–232
2. Mantrala M, Levy M, Kahn B, Fox E, Gaidarev P, Dankworth B, Shah D (2009) Why is assortment planning so difficult for retailers? A framework and research agenda. J Retail 85:71–83
3. Kök A, Fisher M, Vaidyanathan R (2015) Assortment planning: review of literature and industry practice. In: Agrawal N, Smith S (eds) Retail supply chain management: quantitative models and empirical studies, 2nd edn. Springer, Boston
4. van Nierop E, Fok D, Franses P (2008) Interaction between shelf layout and marketing effectiveness and its impact on optimizing shelf arrangements. Mark Sci 27(6):1065–1082
5. Breugelmans E, Campo K, Gijsbrechts E (2007) Shelf sequence and proximity effects on online grocery choices. Mark Lett 18:117–133
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献