Mathematical modeling of statistical data on the incidence of new coronavirus infection, taking into account the stratification by concomitant diagnoses

Author:

Borovsky Andrei Viktorovich1,Galkin Andrey Leonidovich2,Kozlova Svetlana Sergeevna1

Affiliation:

1. Baikal State University

2. Prokhorov General Physics Institute of the Russian Academy of Sciences

Abstract

The article considers the stratification of concomitant diagnoses of Covid-19 recovery statistics for the city of Irkutsk for 2020-2021. The previous study was conducted without taking into account such stratification. Various options for approximating real statistics by Gaussian and Lorentz functions, gamma distribution, and Johnson curves are considered. It is shown that the stratification of recovery statistics improves the approximation of Gaussian and Lorentz functions in comparison with integral statistics, and the construction of an approximation based on the Lorentz function always describes the real statistics better. Estimates of mathematical expectation and variance based on statistical data are consistent with estimates of these values based on the Gaussian approximation of statistics by the least squares method, i.e. the approaches are equivalent. At the same time, calculations of the Pearson Chi-squared criterion reject the hypothesis that empirical data correspond to the assumed theoretical distribution. Therefore, we cannot talk about finding the distribution function, but only about approximating statistics by certain types of curves. The fitting of empirical data by Gaussian and Lorentz functions was carried out using the least squares method. In general, the approximation error due to the stratification of statistics on concomitant diagnoses decreases from 6% to 3%.

Publisher

Astrakhan State Technical University

Reference12 articles.

1. Абдурахимов А. Х., Хегай Л. Н., Юсупова Ш. К. COVID-19 и его осложнения // Re-health journal. 2021. № 4 (12). URL: https://cyberleninka.ru/article/n/covid-19-i-ego-oslozhneniya (дата обращения: 01.02.2024)., Abdurakhimov A. Kh., Khegai L. N., Iusupova Sh. K. COVID-19 i ego oslozhneniia [COVID-19 and its complications]. Re-health journal, 2021, no. 4 (12). Available at: https://cyberleninka.ru/article/n/covid-19-i-ego-oslozhneniya (accessed: 01.02.2024).

2. Боровский А. В., Галкин А. Л., Козлова С. С. Анализ статистических данных амбулаторного лечения COVID-19 по городу Иркутску за 2020–2021 гг. // System Analysis & Mathematical Modeling. 2023. Т. 5. № 4. С. 494–504. DOI: 10.17150/2713-1734.2023.5(4).494-504., Borovskii A. V., Galkin A. L., Kozlova S. S. Analiz statisticheskikh dannykh ambulatornogo lecheniia COVID-19 po gorodu Irkutsku za 2020–2021 gg. [Analysis of statistical data on outpatient treatment of COVID-19 in the city of Irkutsk for 2020-2021]. System Analysis & Mathematical Modeling, 2023, vol. 5, no. 4, pp. 494-504. DOI: 10.17150/2713-1734.2023.5(4).494-504.

3. Боровский А. В., Ильиных Н. Н., Козлова С. С. Математическая модель для скорости заражения SARS-COV-2 в неинфекционных больницах на примере города Иркутска // System Analysis & Mathematical Modeling. 2022. Т. 4. № 3. С. 187–199. DOI: 10.17150/2713-1734.2022.4(3).187-199., Borovskii A. V., Il'inykh N. N., Kozlova S. S. Ma-tematicheskaia model' dlia skorosti zarazheniia SARS-COV-2 v neinfektsionnykh bol'nitsakh na primere goroda Irkutska [A mathematical model for the rate of infection of SARS-COV-2 in non-infectious hospitals using the example of the city of Irkutsk]. System Analysis & Mathematical Modeling, 2022, vol. 4, no. 3, pp. 187-199. DOI: 10.17150/2713-1734.2022.4(3).187-199.

4. Тамм М. В. Коронавирусная инфекция в Москве: прогнозы и сценарии // Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2020. T. 13. № 1. С. 43–51. DOI: 10.17749/2070-4909.2020.13.1.43-51., Tamm M. V. Koronavirusnaia infektsiia v Moskve: prognozy i stsenarii [Coronavirus infection in Moscow: forecasts and scenarios]. Farmakoekonomika. Sovremennaia farmakoekonomika i farmakoepidemiologiia, 2020, vol. 13, no. 1, pp. 43-51. DOI: 10.17749/2070-4909.2020.13.1.43-51.

5. Иванов М. В. Математическое моделирование процесса пандемии. Теория и практика // Институт развития стратегических инициатив. 2020. 30 апр. URL: https://indsi.ru/2020/04/30 (дата обращения: 01.02.2024)., Ivanov M. V. Matematicheskoe modelirovanie protsessa pandemii. Teoriia i praktika [Mathematical modeling of the pandemic process. Theory and practice]. Institut razvitiia strategicheskikh initsiativ, 2020, 30 aprelia. Available at: https://indsi.ru/2020/04/30 (accessed: 01.02.2024).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3