Kinetics of sulfuric acid leaching of nickel from grinding waste of rhenium-containing superalloys

Author:

Таrganov I. E.1,Troshkina I. D.1

Affiliation:

1. Mendeleev University of Chemical Technology of Russia

Abstract

The paper studies the kinetics of sulfuric acid leaching of nickel, the main component of grinding waste of ZhS-32VI rheniumcontaining heat-resistant superalloy formed during mechanical processing of products and containing such impurities as abrasive materials, oils, ceramics and other contaminants with refractory metal concentration in a solid residue, in agitation mode. The nickel content is 60 %. In addition to nickel, grinding waste contains other metals such as rhenium, chromium, cobalt, tungsten, tantalum, molybdenum, hafnium, titanium, and aluminum. The process of nickel leaching from waste with a sulfuric acid solution was carried out in a thermostated cell at an elevated temperature (55–85 °С), waste : 3 M H2SO4 solution phase ratio of 1 g : 10 ml, and stirring rate of 200 min–1. Kinetics was studied using a fraction of –0.071 mm with the highest yield (49.2 wt.%) in grinding waste. Convex kinetic curves of nickel leaching from waste were obtained. It was found that when the temperature changes from 55 to 85 °С, the time until leaching stops decreases from 220 to 140 min, and nickel recovery from the solution increases from 45 to 99 %. The data of the obtained kinetic curves were linearized according to the «contracting sphere» equation, Gistling–Braunstein and Kazeev–Erofeev equations (the latter is most suitable for description). Taking into account the assessment of anamorphosis correlation coefficients, it was found that nickel leaching from grinding waste is limited by the chemical reaction, and the process proceeds in the kinetic region of the reaction. The apparent activation energy calculated using the Arrhenius equation and rate constants obtained by processing linearized kinetic curves according to the «contracting sphere» model, was 47.5±0.5 kJ/mol. This value confirms the course of the process in the kinetic region where the process can be intensified by increasing its temperature.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3