Oxidative leaching of rhenium from grinding waste of rhenium-containing superalloys

Author:

Targanov I. E.1ORCID,Solodovnikov M. A.1ORCID,Troshkina I. D.1ORCID

Affiliation:

1. Mendeleev University of Chemical Technology of Russia

Abstract

The study investigated the feasibility of oxidative leaching rhenium in the presence of hydrochloric acid from machining waste (grinding waste) derived from products made of ZhS-32VI, a nickel-based heat-resistant alloy containing rhenium. This was achieved through agitation leaching process. The grinding waste fraction size of –0.071 mm, which accounted for the highest yield (49.2 wt.%), was utilized in the experiments. The rhenium leaching process was conducted in two variations: in the first option, grinding waste was mixed with a hydrochloric acid solution at ~100 °C, followed by the addition of hydrogen peroxide to the leaching solution after it had cooled; in the second option, leaching was performed using a hydrochloric acid solution with the gradual addition of hydrogen peroxide solution. The highest degree of rhenium leaching (91.0 %) was achieved in the first option. In this case, the initial concentration of hydrochloric acid was 8 M, and the molar ratio of the added reagents was ν(HCl): ν(H2O2) = 2.7 : 1.0. The kinetics of nickel leaching using a 6 M hydrochloric acid solution at 70 °C, with a solid-to-liquid phase ratio of 1 g : 50 ml, was also examined. The analysis of the kinetic data, processed using the “contracting sphere,” Ginstling–Brounshtein, and Kazeev–Erofeev models, indicates that the nickel leaching process occurs within the kinetic region. Additionally, the kinetics of rhenium leaching from the solid residue obtained after the hydrochloric acid leaching of nickel from grinding waste was investigated. Employing the same kinetic models to analyze the data, it was determined that the limiting stage of this process involves the diffusion of hydrogen peroxide within the rhenium-containing solid residue. 

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

Reference22 articles.

1. Kablov E.N., Bondarenko Yu.A., Kolodyazhnyi M.Yu., Surova V.A., Narskii A.R. Prospects for the creation of high-temperature heat-resistant alloys based on refractory matrices and natural composites. Voprosy materialovedeniya. 2020;4 (104):64—78. (In Russ.). https://doi.org/10.22349/1994-6716-2020-104-4-64-78

2. Палант А.А., Трошкина И.Д., Чекмарев А.М., Костылев А.И. Технология рения. М.: ООО «ГаллеяПринт», 2015. 329 с.

3. Znamenskii V.S, Korzhinskii M.A., Shteinberg G.S., Tkachenko S.I., Yakushev A.I., Laputina I.P., Bryzgalov I.A., Samotoin N.D., Magazina L.O., Kuz’mina O.V., Organova N.I., Rassulov V.A., Chaplygin I.V. Rheniite, ReS2, the natural rhenium disulfide from fumaroles of Kudryavy volcano (Iturup isl., Kurily islands). Zapiski Rossiyskogo Mineralogicheskogo Obshchestva. 2005;134(5):32—39. (In Russ.).

4. Левченко Е.Н., Ключарев Д.С. Нетрадиционные источники критических редких металлов. Труды науч.-практ. конференции «Минерально-сырьевая база металлов высоких технологий. Освоение, воспроизводство, использование» (Москва, 3—4 дек. 2019 г.). М.: ФГБУ «ВИМС», 2020. С. 116—127.

5. Nowotnik A. Nickel-based superalloys (Reference module in materials science and materials engineering). 2016. https://doi.org/10.1016/B978-0-12-803581-8.02574-1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3