Intelligent System for Fall Prediction Based on Accelerometer and Gyroscope of Fatal Injury in Geriatric

Author:

Amiroh Khodijah,Rahmawati Dewi,Wicaksono Ardian Yusuf

Abstract

Methods of prevention and equipment to reduce the risk of falls based on accelerometer and gyroscope sensor have developed rapidly because its operations are cheaper than video cameras. Improved accuracy of detection and fall prediction based on accelerometer and gyroscope sensor is carried out by utilizing Artificial Intelligence (AI) to predict falling patterns. However, the existing fall prediction system is less responsive and also has a low level of accuracy, sensitivity and specificity. The current system does not have a notification system to care givers or doctors in the hospital. To overcome the above problems, this study proposes the development of smart fall prediction system based on accelerometer and gyroscope for the prevention of fractures in geriatric populations (JaPiGi) which are accurate and have high sensitivity and specificity. This study uses Fuzzy Mamdani to recognize movements falling forward, falling sideways, sitting, sleeping, squatting and praying. The total data tested was 100 data from 10 participants. The introduction of this movement is based on 6 input variables from data of accelerometer and gyroscope sensor. To calculate the accuracy, precision, sensitivity and specificity in this study using the equation Receiver Operating Characteristic (ROC). Motion recognition is carried out 3 times with an average accuracy of 90%.

Publisher

Universitas Andalas

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3