Achieving High Success in Fall Detection through Cross-Brand Inertial Sensor Utilization of Hybrid Data in Machine Learning

Author:

BUZPINAR Mehmet Akif1

Affiliation:

1. Sivas Cumhuriyet University

Abstract

Abstract

Falls can result in severe injuries and even mortality among individuals of all age groups. Hence, numerous wearable sensor-based fall monitoring systems are being developed to provide assistance. Fall detection and activity tracking have been partially successful using smartwatches, smartphones, and specialized devices. However, a comprehensive solution that combines sensor data from different brands in a single model and performs fall detection with high accuracy and at a satisfactory level has not been encountered. This study aims to bridge this research gap by combining data from two different brands of IMUs (inertial measurement units) that incorporate accelerometers, magnetometers, and gyroscopes, in order to create a hybrid dataset. To achieve accurate predictions on data from both brands, machine learning (ML) models were trained using ML algorithms. The first dataset was obtained from 14 volunteers using a commercially available activity tracking system called Motion Trackers Wireless (MTw). The second dataset was collected from 30 volunteers using a custom-designed Activity Tracking Device (ATD) specifically developed for detecting falls and daily-life activities. In both cases, the sensors from the respective brands were positioned on the waist to capture data related to falls and daily-life activities. The data was organized using a time-series style to reveal relational effect of the sequential falling data. During the modelling, ten different classifiers trained, and classification was performed on unseen data using the data splitting method. The Extra Tree algorithm emerged as the most successful model, achieving an accuracy of 99.54%, precision of 99.18%, recall of 99.79%, and an F-score of 99.49% on the hybrid dataset constructed from the MTw and ATD datasets. This study demonstrates hybrid dataset to create a successful system with high accuracy and low false alarm rates using inertial sensor data from various brands.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3