γ-Aminobutyric Acid Type A Receptor Modulation by Etomidate Analogs

Author:

Pejo Ervin1,Santer Peter1,Wang Lei1,Dershwitz Philip1,Husain S. Shaukat1,Raines Douglas E.1

Affiliation:

1. From the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (E.P., P.S., P.D., S.S.H., D.E.R.); and Certara L.P., St. Louis, Missouri (L.W.).

Abstract

Abstract Background Etomidate is a highly potent anesthetic agent that is believed to produce hypnosis by enhancing γ-aminobutyric acid type A (GABAA) receptor function. The authors characterized the GABAA receptor and hypnotic potencies of etomidate analogs. The authors then used computational techniques to build statistical and graphical models that relate the potencies of these etomidate analogs to their structures to identify the specific molecular determinants of potency. Methods GABAA receptor potencies were defined with voltage clamp electrophysiology using α1β3γ2 receptors harboring a channel mutation (α1[L264T]) that enhances anesthetic sensitivity (n = 36 to 60 measurements per concentration–response curve). The hypnotic potencies of etomidate analogs were defined using a loss of righting reflexes assay in Sprague Dawley rats (n = 9 to 21 measurements per dose–response curve). Three-dimensional quantitative structure–activity relationships were determined in silico using comparative molecular field analysis. Results The GABAA receptor and hypnotic potencies of etomidate and the etomidate analogs ranged by 91- and 53-fold, respectively. These potency measurements were significantly correlated (r2 = 0.72), but neither measurement correlated with drug hydrophobicity (r2 = 0.019 and 0.005, respectively). Statistically significant and predictive comparative molecular field analysis models were generated, and a pharmacophore model was built that revealed both the structural elements in etomidate analogs associated with high potency and the interactions that these elements make with the etomidate-binding site. Conclusions There are multiple specific structural elements in etomidate and etomidate analogs that mediate GABAA receptor modulation. Modifying any one element can alter receptor potency by an order of magnitude or more.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3