Etomidate Depresses Spontaneous Complex Spikes Activity of Cerebellar Purkinje Cells via Cannabinoid 1 Receptor in vivo in Mice

Author:

Pan Wen,Chu Chun-Ping,Qiu De-LaiORCID

Abstract

Introduction: Complex spikes (CSs) activity of cerebellar Purkinje cells plays critical roles in motor coordination and motor learning by transferring information to cerebellar cortex, which is an accessible and useful model for neurophysiological investigation. Etomidate is an ultrashort-acting nonbarbiturate intravenous anesthetic, which inhibits the spontaneous activity of cerebellar Purkinje cells through activation of GABAA and glycine receptors in vivo in mice. However, the effect of etomidate on the spontaneous CSs activity of cerebellar Purkinje cells in living mouse is not clear. Methods: We here investigated the effects of etomidate on spontaneous CSs activity of cerebellar Purkinje cell in urethane-anesthetized mice by electrophysiology recording technique and pharmacological methods. Results: Our results showed that cerebellar surface perfusion of etomidate significantly depressed the activity of spontaneous CSs, which exhibited decreases in the number of spikelets and the area under curve (AUC) of the CSs. The etomidate-produced inhibition of CSs activity was persisted in the presence of GABAA and glycine receptors antagonists. However, application of cannabinoid 1 (CB1) receptor antagonist, AM-251, completely blocked the etomidate-induced inhibition of CSs. Furthermore, application of the CB1 receptor agonist, WIN55212-2, induced a decrease of CSs. Moreover, in the presence of a specific protein kinase A (PKA) inhibitor, KT5720, etomidate failed to produce decreases in the spikelets number and the AUC of the spontaneous CSs. Conclusion: These results indicate that cerebellar surface application of etomidate facilitates CB1 receptor activity resulting in a depression of spontaneous CSs activity of Purkinje cells via PKA signaling pathway in mouse cerebellar cortex. Our present results suggest that the etomidate administration may impair the function of cerebellar cortical neuronal circuitry by inhibition of the climbing fiber – Purkinje cells synaptic transmission through activation of CB1 receptors in vivo in mice.

Publisher

S. Karger AG

Subject

Pharmacology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3