Effect of Extracerebral Contamination on Near-infrared Spectroscopy as Revealed during Organ Donation: A Prospective Observational Study in Brain-dead Organ Donors

Author:

Soehle Martin1ORCID,Langer Juliane2,Schindler Ehrenfried3,Manekeller Steffen4,Coburn Mark5,Thudium Marcus6

Affiliation:

1. 1Department of Anesthesiology and Intensive Care Medicine, and Inhouse Transplant Coordination Office of the Medical Director, University Hospital Bonn, Bonn, Germany.

2. 2Inhouse Transplant Coordination Office of the Medical Director, University Hospital Bonn, Bonn, Germany.

3. 3Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany

4. 4Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany.

5. 5Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.

6. 6Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.

Abstract

Background Near-infrared spectroscopy (NIRS) has been utilized widely in anesthesia and intensive care to monitor regional cerebral oxygen saturation (rScO2). A normal oxygenation of extracerebral tissues may overlay and thereby mask cerebral desaturations, a phenomenon known as extracerebral contamination. The authors investigated the effect of a cessation of extracerebral tissue perfusion on rScO2 in patients with anoxic brains. Methods In a single-center, prospective, observational study, brain-dead adults undergoing organ donation were investigated. rScO2 was measured bifrontally using the INVOS 5100C/7100 as well as the ForeSight Elite system. To achieve an efficient conservation of organs and to prevent a redistribution of the perfusion fluid to other tissues, the aorta was clamped before organ perfusion. rScO2 was monitored until at least 40 min after aortic clamping. The primary outcome was the amount of extracerebral contamination as quantified by the absolute decrease in rScO2 after aortic clamping. Secondary outcomes were the absolute rScO2 values obtained before and after clamping. Results Twelve organ donors were included. Aortic clamping resulted in a significantly (P < 0.001) greater absolute decrease in rScO2 when comparing the INVOS (43.0 ± 9.5%) to the ForeSight (27.8 ± 7.1%) monitor. Before aortic clamping, near-normal rScO2 values were obtained by the INVOS (63.8 ± 6.2%) and the ForeSight monitor (67.7 ± 6.5%). The rScO2 significantly (P < 0.001) dropped to 20.8 ± 7.8% (INVOS) and 39.9 ± 8.1% (ForeSight) 30 min after clamping, i.e., a condition of a desaturation of both extracerebral and cerebral tissues. Conclusions The abrupt end of extracerebral contamination, caused by aortic clamping, affected both NIRS monitors to a considerable extent. Both the INVOS and the ForeSight monitor were unable to detect severe cerebral hypoxia or anoxia under conditions of normal extracerebral oxygenation. While both NIRS monitors may guide measures to optimize arterial oxygen supply to the head, they should not be used with the intention to detect isolated cerebral desaturations. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3