Laser-assisted failure recovery for dielectric elastomer actuators in aerial robots

Author:

Kim Suhan12ORCID,Hsiao Yi-Hsuan12ORCID,Lee Younghoon12ORCID,Zhu Weikun23ORCID,Ren Zhijian12ORCID,Niroui Farnaz12ORCID,Chen Yufeng12ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

2. Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

3. Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

Abstract

Insects maintain remarkable agility after incurring severe injuries or wounds. Although robots driven by rigid actuators have demonstrated agile locomotion and manipulation, most of them lack animal-like robustness against unexpected damage. Dielectric elastomer actuators (DEAs) are a class of muscle-like soft transducers that have enabled nimble aerial, terrestrial, and aquatic robotic locomotion comparable to that of rigid actuators. However, unlike muscles, DEAs suffer local dielectric breakdowns that often cause global device failure. These local defects severely limit DEA performance, lifetime, and size scalability. We developed DEAs that can endure more than 100 punctures while maintaining high bandwidth (>400 hertz) and power density (>700 watt per kilogram)—sufficient for supporting energetically expensive locomotion such as flight. We fabricated electroluminescent DEAs for visualizing electrode connectivity under actuator damage. When the DEA suffered severe dielectric breakdowns that caused device failure, we demonstrated a laser-assisted repair method for isolating the critical defects and recovering performance. These results culminate in an aerial robot that can endure critical actuator and wing damage while maintaining similar accuracy in hovering flight. Our work highlights that soft robotic systems can embody animal-like agility and resilience—a critical biomimetic capability for future robots to interact with challenging environments.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Artificial Intelligence,Control and Optimization,Computer Science Applications,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3