Autonomous, untethered gait-like synchronization of lobed loops made from liquid crystal elastomer fibers via spontaneous snap-through

Author:

Kim Dae Seok12ORCID,Lee Young-Joo1,Kim Young Been2,Wang Yuchen1ORCID,Yang Shu1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA.

2. Pukyong National University, Department of Polymer Engineering, 45 Yongso-ro, Nam-gu, Busan, South Korea.

Abstract

The transition from one equilibrium state to another via rapid snap-through can store elastic energy and release it as kinetic energy for rapid motion as seen in Venus flytrap and hummingbird to catch insects mid-flight. They are explored in soft robotics for repeated and autonomous motions. In this study, we synthesize curved liquid crystal elastomer (LCE) fibers as the building blocks that can undergo buckling instability upon heated on a hot surface, leading to autonomous snap-through and rolling behaviors. When they are connected into lobed loops, where each fiber is geometrically constrained by the neighboring ones, they demonstrate autonomous, self-regulated, and repeated synchronization with a frequency of ~1.8 Hz. By adding a rigid bead on the fiber, we can fine-tune the actuation direction and speed (up to ~2.4 mm/s). Last, we demonstrate various gait-like locomotion patterns using the loops as the robot’s legs.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3