Ultrafast response of spontaneous photovoltaic effect in 3R-MoS 2 –based heterostructures

Author:

Wu Jingda12ORCID,Yang Dongyang12,Liang Jing12ORCID,Werner Max12ORCID,Ostroumov Evgeny12ORCID,Xiao Yunhuan12,Watanabe Kenji3ORCID,Taniguchi Takashi4ORCID,Dadap Jerry I.12ORCID,Jones David12ORCID,Ye Ziliang12ORCID

Affiliation:

1. Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada.

2. Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada.

3. Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

4. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

Abstract

Rhombohedrally stacked MoS 2 has been shown to exhibit spontaneous polarization down to the bilayer limit and can sustain a strong depolarization field when sandwiched between graphene. Such a field gives rise to a spontaneous photovoltaic effect without needing any p-n junction. In this work, we show that the photovoltaic effect has an external quantum efficiency of 10% for devices with only two atomic layers of MoS 2 at low temperatures, and identify a picosecond-fast photocurrent response, which translates to an intrinsic device bandwidth at ∼100-GHz level. To this end, we have developed a nondegenerate pump-probe photocurrent spectroscopy technique to deconvolute the thermal and charge-transfer processes, thus successfully revealing the multicomponent nature of the photocurrent dynamics. The fast component approaches the limit of the charge-transfer speed at the graphene-MoS 2 interface. The remarkable efficiency and ultrafast photoresponse in the graphene-3R-MoS 2 devices support the use of ferroelectric van der Waals materials for future high-performance optoelectronic applications.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3