The future of Earth system prediction: Advances in model-data fusion

Author:

Gettelman Andrew1ORCID,Geer Alan J.2ORCID,Forbes Richard M.2ORCID,Carmichael Greg R.3,Feingold Graham4ORCID,Posselt Derek J.5ORCID,Stephens Graeme L.5ORCID,van den Heever Susan C.6ORCID,Varble Adam C.7ORCID,Zuidema Paquita8ORCID

Affiliation:

1. National Center for Atmospheric Research, Boulder, CO, USA.

2. European Centre for Medium-Range Weather Forecasts, Reading, UK.

3. University of Iowa, Iowa City, IA, USA.

4. NOAA Chemical Sciences Laboratory, Boulder, CO, USA.

5. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

6. Colorado State University, Fort Collins, CO, USA.

7. Pacific Northwest National Laboratory, Richland, WA, USA.

8. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.

Abstract

Predictions of the Earth system, such as weather forecasts and climate projections, require models informed by observations at many levels. Some methods for integrating models and observations are very systematic and comprehensive (e.g., data assimilation), and some are single purpose and customized (e.g., for model validation). We review current methods and best practices for integrating models and observations. We highlight how future developments can enable advanced heterogeneous observation networks and models to improve predictions of the Earth system (including atmosphere, land surface, oceans, cryosphere, and chemistry) across scales from weather to climate. As the community pushes to develop the next generation of models and data systems, there is a need to take a more holistic, integrated, and coordinated approach to models, observations, and their uncertainties to maximize the benefit for Earth system prediction and impacts on society.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference85 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3