Strain-induced van der Waals gaps in GeTe revealed by in situ nanobeam diffraction

Author:

Yu Yong12ORCID,Xie Lin1,Pennycook Stephen J.2ORCID,Bosman Michel2ORCID,He Jiaqing1ORCID

Affiliation:

1. Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.

2. Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.

Abstract

Ordered germanium vacancies in germanium telluride thermoelectric material are called van der Waals (vdW) gaps, and they are beneficial for the thermoelectric performance of the material. The vdW gaps have been observed by atomic resolution scanning transmission electron microscopy, but their origin remains unclear, which prevents their extensive application in other materials systems. Here, we report that the occurrence of vdW gaps in germanium telluride is mainly driven by strain from the cubic-to-rhombohedral martensitic transition. Direct strain and structural evidence are given here by in situ nanobeam diffraction and in situ transmission electron microscopy observation. Dislocation theory is used to discuss the origin of vdW gaps. Our work here paves the way for self-assembling two-dimensional ordered vacancies, which establishes a previously unidentified degree of freedom to adjust their electronic and thermal properties.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3