Direct isolation of small extracellular vesicles from human blood using viscoelastic microfluidics

Author:

Meng Yingchao1ORCID,Zhang Yanan23ORCID,Bühler Marcel23ORCID,Wang Shuchen1ORCID,Asghari Mohammad1,Stürchler Alessandra14ORCID,Mateescu Bogdan14ORCID,Weiss Tobias23ORCID,Stavrakis Stavros1ORCID,deMello Andrew J.1ORCID

Affiliation:

1. Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.

2. Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland.

3. Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland.

4. Brain Research Institute, University of Zürich, 8057 Zürich, Switzerland.

Abstract

Small extracellular vesicles (sEVs; <200 nm) that contain lipids, nucleic acids, and proteins are considered promising biomarkers for a wide variety of diseases. Conventional methods for sEV isolation from blood are incompatible with routine clinical workflows, significantly hampering the utilization of blood-derived sEVs in clinical settings. Here, we present a simple, viscoelastic-based microfluidic platform for label-free isolation of sEVs from human blood. The separation performance of the device is assessed by isolating fluorescent sEVs from whole blood, demonstrating purities and recovery rates of over 97 and 87%, respectively. Significantly, our viscoelastic-based microfluidic method also provides for a remarkable increase in sEV yield compared to gold-standard ultracentrifugation, with proteomic profiles of blood-derived sEVs purified by both methods showing similar protein compositions. To demonstrate the clinical utility of the approach, we isolate sEVs from blood samples of 20 patients with cancer and 20 healthy donors, demonstrating that elevated sEV concentrations can be observed in blood derived from patients with cancer.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3