All-optical graph representation learning using integrated diffractive photonic computing units

Author:

Yan Tao12ORCID,Yang Rui134ORCID,Zheng Ziyang134,Lin Xing2356ORCID,Xiong Hongkai4ORCID,Dai Qionghai1256ORCID

Affiliation:

1. Department of Automation, Tsinghua University, Beijing 100084, China.

2. Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China.

3. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.

4. Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

5. Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.

6. Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing 100084, China.

Abstract

Photonic neural networks perform brain-inspired computations using photons instead of electrons to achieve substantially improved computing performance. However, existing architectures can only handle data with regular structures but fail to generalize to graph-structured data beyond Euclidean space. Here, we propose the diffractive graph neural network (DGNN), an all-optical graph representation learning architecture based on the diffractive photonic computing units (DPUs) and on-chip optical devices to address this limitation. Specifically, the graph node attributes are encoded into strip optical waveguides, transformed by DPUs, and aggregated by optical couplers to extract their feature representations. DGNN captures complex dependencies among node neighborhoods during the light-speed optical message passing over graph structures. We demonstrate the applications of DGNN for node and graph-level classification tasks with benchmark databases and achieve superior performance. Our work opens up a new direction for designing application-specific integrated photonic circuits for high-efficiency processing large-scale graph data structures using deep learning.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3