Partial coherence enhances parallelized photonic computing

Author:

Dong BoweiORCID,Brückerhoff-Plückelmann Frank,Meyer Lennart,Dijkstra Jelle,Bente IvonneORCID,Wendland DanielORCID,Varri Akhil,Aggarwal SamarthORCID,Farmakidis NikolaosORCID,Wang Mengyun,Yang GuoceORCID,Lee June Sang,He Yuhan,Gooskens Emmanuel,Kwong Dim-Lee,Bienstman Peter,Pernice Wolfram H. P.ORCID,Bhaskaran HarishORCID

Abstract

AbstractAdvancements in optical coherence control1–5 have unlocked many cutting-edge applications, including long-haul communication, light detection and ranging (LiDAR) and optical coherence tomography6–8. Prevailing wisdom suggests that using more coherent light sources leads to enhanced system performance and device functionalities9–11. Our study introduces a photonic convolutional processing system that takes advantage of partially coherent light to boost computing parallelism without substantially sacrificing accuracy, potentially enabling larger-size photonic tensor cores. The reduction of the degree of coherence optimizes bandwidth use in the photonic convolutional processing system. This breakthrough challenges the traditional belief that coherence is essential or even advantageous in integrated photonic accelerators, thereby enabling the use of light sources with less rigorous feedback control and thermal-management requirements for high-throughput photonic computing. Here we demonstrate such a system in two photonic platforms for computing applications: a photonic tensor core using phase-change-material photonic memories that delivers parallel convolution operations to classify the gaits of ten patients with Parkinson’s disease with 92.2% accuracy (92.7% theoretically) and a silicon photonic tensor core with embedded electro-absorption modulators (EAMs) to facilitate 0.108 tera operations per second (TOPS) convolutional processing for classifying the Modified National Institute of Standards and Technology (MNIST) handwritten digits dataset with 92.4% accuracy (95.0% theoretically).

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3