Computing dimension for a reconfigurable photonic tensor processing core based on silicon photonics

Author:

Ouyang Hao,Tao Zilong1,You Jie2ORCID,Hao Hao1ORCID,Zhang Jun2,Tang Shengjie3ORCID,Lv Haibin3ORCID,Liu Xiaoping3ORCID,Cheng Xiang’ai,Jiang Tian1ORCID

Affiliation:

1. National University of Defense Technology

2. National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China

3. ShanghaiTech University

Abstract

In the rapidly evolving field of artificial intelligence, integrated photonic computing has emerged as a promising solution to address the growing demand for high-performance computing with ultrafast speed and reduced power consumption. This study presents what we believe is a novel photonic tensor processing core (PTPC) on a chip utilizing wavelength division multiplexing technology to perform parallel multiple vector-matrix multiplications concurrently, allowing for reconfigurable computing dimensions without changing the hardware scale. Specifically, this architecture significantly enhances the number of operations in convolutional neural networks, making it superior to other photonic computing systems. Experimental evaluations demonstrate the high-speed performance of the PTPC, achieving an impressive total computing speed of 0.252 TOPS and a computing speed per unit as high as 0.06 TOPS /unit in a compact hardware scale. Additionally, proof-of-concept application experiments are conducted on benchmark datasets, including the Modified National Institute of Standards and Technology (MNIST), Google Quickdraw, and CIFAR-10, with high accuracies of 97.86%, 93.51%, and 70.22%, respectively, in image recognition and classification tasks. By enabling parallel operations in PTPC on a chip, this study opens new avenues for exploration and innovation at the intersection of silicon photonics, scalable computation, and artificial intelligence, shaping the future landscape of computing technologies.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3