Experimental signatures of the transition from acoustic plasmon to electronic sound in graphene

Author:

Barcons Ruiz David1ORCID,Hesp Niels C.H.1ORCID,Herzig Sheinfux Hanan1ORCID,Ramos Marimón Carlos1ORCID,Maissen Curdin Martin2ORCID,Principi Alessandro3ORCID,Asgari Reza45ORCID,Taniguchi Takashi6ORCID,Watanabe Kenji7ORCID,Polini Marco189,Hillenbrand Rainer21011ORCID,Torre Iacopo1ORCID,Koppens Frank H.L.112ORCID

Affiliation:

1. ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain.

2. CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain.

3. Department of Physics and Astronomy, The University of Manchester, M13 9PL Manchester, UK.

4. School of Physics, Institute for Research in Fundamental Sciences, IPM, Tehran 19395-5531, Iran.

5. School of Physics, University of New South Wales, Kensington, NSW 2052, Australia.

6. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

7. Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

8. Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy.

9. Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, I-16163 Genova, Italy.

10. CIC nanoGUNE BRTA and Department of Electricity and Electronics, UPV/EHU, 20018 Donostia-San Sebastián, Spain.

11. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.

12. ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain.

Abstract

Fermi liquids respond differently to perturbations depending on whether their frequency is higher (collisionless regime) or lower (hydrodynamic regime) than the interparticle collision rate. This results in a different phase velocity between the collisionless zero sound and the hydrodynamic first sound. We performed terahertz photocurrent nanoscopy measurements on graphene devices, with a metallic gate close to the graphene layer, to probe the dispersion of propagating acoustic plasmons, the counterpart of sound modes in electronic Fermi liquids. We report the observation of a change in the plasmon phase velocity when the excitation frequency approaches the electron-electron collision rate that is compatible with the transition between the zero and the first sound mode.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference43 articles.

1. D. Pines P. Nozières The Theory of Quantum Liquids (W. A. Benjamin Inc. 1963).

2. Renormalization-group approach to interacting fermions

3. Dispersion of sound in a fermi liquid;Khalatnikov I. M.;Soviet J. Exp. Theor. Phys.,1958

4. Propagation of Zero Sound in LiquidHe3at Low Temperatures

5. Electronic sound modes and plasmons in hydrodynamic two-dimensional metals

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3