Selective Damping of Plasmons in Coupled Two-dimensional Systems by Coulomb Drag

Author:

Safonov I.ORCID,Petrov A. S.ORCID,Svintsov D.ORCID

Abstract

The Coulomb drag is a many-body effect observed in proximized low-dimensional systems. It appears as emergence of voltage in one of them upon passage of bias current in another. The magnitude of drag voltage can be strongly affected by exchange of plasmonic excitations between the layers; however, the reverse effect of Coulomb drag on properties of plasmons has not been studied. Here, we study the plasmon spectra and damping in parallel two-dimensional systems in the presence of Coulomb drag. We find that Coulomb drag leads to selective damping of one of the two fundamental plasma modes of a coupled bilayer. For identical electron doping of both layers, the drag suppresses the acoustic plasma mode; while for symmetric electron-hole doping of the coupled pair, the drag suppresses the optical plasma mode. The selective damping can be observed both for propagating modes in extended bilayers and for localized plasmons in bilayers confined by source and drain contacts. The discussed effect may provide access to the strength of Coulomb interaction in 2d electron systems from various optical and microwave scattering experimnets.

Publisher

Pleiades Publishing Ltd

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3